(HPC 3): Implement Min, Max, Sum and Average operations using Parallel Reduction
(HPC 5 Any One)
1. Evaluate Performance Enhancement of Parallel Quick Sort Algorithm Using
MPI.
2. Implement Huffman Encoding on GPU.
3. Implement Parallelization of Database Query Optimization
4. Implement Non-Serial Polyadic Dynamic Programming With GPU
Parallelization
(DL1): Linear regression by using Deep Neural network: Implement Boston
housing price prediction problem by Linear regression using Deep Neural
network. Use Boston House price prediction dataset.
(DL 2 Any One)
1. Classification using Deep neural network: Multiclass classification using
Deep Neural Networks: Example: Use the OCR letter recognition dataset
https://archive.ics.uci.edu/ml/datasets/letter+recognition
2. Binary classification using Deep Neural Networks Example: Classify movie
reviews into positive" reviews and "negative" reviews, just based on the text
content of the reviews. Use IMDB dataset
( DL 3 Any One)
1.Convolutional neural network (CNN): Use MNIST Fashion Dataset and
create a classifier to classify fashion clothing into categories.
2.Convolutional neural network (CNN): Use any dataset of plant disease and
design a plant disease detection system using CNN.
(DL 4 Any One)
1.Project:Human Face recognition
# Use a valid cascade file path
face_cap = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
video = cv2.VideoCapture(0)
while True:
ret, frame = video.read()
if not ret:
break
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cap.detectMultiScale(
gray_frame,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
flags=cv2.CASCADE_SCALE_IMAGE
)
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.imshow("Real-Time Face Detection", frame)
if cv2.waitKey(1) & 0xFF == ord('t'):
break
video.release()
cv2.destroyAllWindows()
2.Projcet:Gender and Age Detection:Predict If a person is a male and female
and also their Age.
3.Colorizing Old B&W Images :Color Old Black & White Images To
Colourful Images.